You saw that multiplying adds the number of things being multiplied, increasing the exponent.
When you divide, the opposite happens:
\[a^m \div a^n = a^{m-n} \,.\]
This is because \(a^n\) cancels \(n\) lots of \(a\) from \(a^m\), so for example,
\[ \frac{2^6}{2^4} = \frac{2 \times 2 \times 2 \times 2 \times 2 \times 2}{2 \times 2 \times 2 \times 2} = 2 \times 2 \times \frac{2 \times 2 \times 2 \times 2}{2 \times 2 \times 2 \times 2} = 2^2\,.\]
Still following along? (If not, leave a note).