Loading [MathJax]/jax/output/HTML-CSS/jax.js

A Student Guide to A-Level Mathematics

Raising a Power of Another Power.

The title means that if you raise a number to a certain power, and then use raise the resulting number to another power, what do you get?

In symbols, we get \left(a^m\right)^n = a^{mn}\,.

Explanation

The a^m expression inside means this: \underbrace{a \times a \times \dotsb \times a}_{\text{\(a\) appearing \(m\) times}}\,.

The ({\phantom{a}})^n part means to repeat “a^mn times: \text{repeat \(n\) times} \left\{ \vphantom{ \begin{align} &a\\ &a\\ &\vdots\\ &a \end{align} } \right. \begin{align} &\overbrace{a \times a \times \dotsb \times a}^{\text{\(m\) times}}\\ \times &a \times a \times \dotsb \times a\\ &\phantom{a \times a}\vdots\\ \times &a \times a \times \dotsb \times a\\ \vphantom{a} \end{align} %\right.

So \left(a^m\right)^n is the same as multiplying n rows of m lots of a, with the total of m \times n lots of a being multiplied together.

This is the same as raising a to the power of m+n.

Example

Take 13^4 as an example. This is the same as 13 \times 13 \times 13 \times 13.

Now, raise that whole thing to the power of 2 and it’ll become \begin{align} &(13 \times 13 \times 13 \times 13)\\ \times &(13 \times 13 \times 13 \times 13) = 13^{4 \times 2} \end{align}

If instead of squaring, you cubed it: \begin{align} &13 \times 13 \times 13 \times 13\\ \times &13 \times 13 \times 13 \times 13\\ \times &13 \times 13 \times 13 \times 13 = 13^{4 \times 3} = 13^{12} \end{align}

And, to the power of five: \begin{align} &13 \times 13 \times 13 \times 13\\ \times &13 \times 13 \times 13 \times 13\\ \times &13 \times 13 \times 13 \times 13\\ \times &13 \times 13 \times 13 \times 13\\ \times &13 \times 13 \times 13 \times 13 = 13^{4 \times 5} = 13^{20} \end{align}