If you multiply two numbers with the same base together, you’ll find that
\[\color{#a31500}{a^m} \times \color{#009828}{a^n} = a^{\color{#a31500}{m}+\color{#009828}{n}}\,.\]
This is because \begin{align} \color{#a31500}{ a^m }&= \underbrace{ \color{#a31500}{ a \times \dotsb \times a } }_{ \color{#a31500}{ \text{\(m\) times} } } , && \text{and}\\ \color{#009828}{ a^n }&= \underbrace{ \color{#009828}{ a \times \dotsb \times a } }_{ \color{#009828}{ \text{\(n\) times} } } \end{align} so if you multiply them together, you will get \begin{align} \color{#a31500}{a^m} \times \color{#009828}{a^n} &= \overbrace{ \color{#a31500}{ a \times \dotsb \times a } }^{ \color{#a31500}{ \text{\(m\) times} } } \times \overbrace{ \color{#009828}{ a \times \dotsb \times a } }^{ \color{#009828}{ \text{\(n\) times} } } \\ &= \underbrace{ \color{#a31500}{ a \times \dotsb \times a } \times \color{#009828}{ a \times \dotsb \times a } }_{ \text{\(m+n\) times} } &=a^{m+n}\,. \end{align}
Multiply \(2^6\) and \(2^4\) together. You’ll get something like \[2^6 \times 2^4 = \underbrace{\overbrace{2\times2\times\dotsb\times 2}^{\text{\(6\) times}} \times \overbrace{2\times\dotsb\times 2}^{\text{\(4\) times}}}_{\text{\(10\) times}} = 2^{10}\,.\]